

1st International EIMPack Congress

Processing of plastic packaging waste – from material following the DKR specifications to milled goods

Lisbon, 29th – 30th November 2012

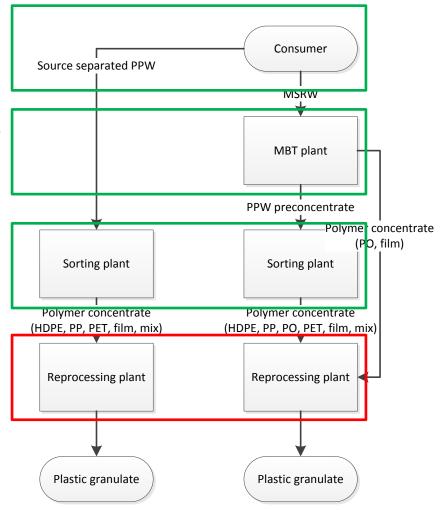
Dipl.-Ing. Michael Jansen

Table of content

- Introduction
- Methodology
- Results
- Conclusion

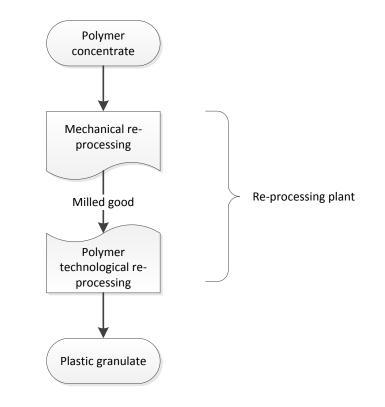
TOC

Legal basis


- Article 11(2a) of Directive 2008/98/EC of the European Parliament sets a recycling quota for plastic packaging waste (PPW) of 50 % by 2020
- Recent developments in several member states allow for alternative collection schemes to source separation
 - For example in Spain, France, Austria and the Netherlands
- The calculation of the quota is based on the input of certified recyclers (Certification now on EU-level with EuCertPlast)

The PPW recycling chain

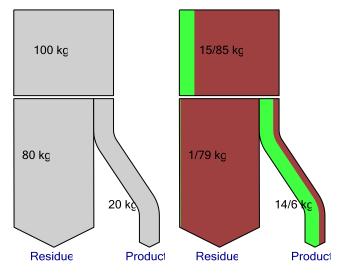
- Studies regarding the source of the plastic packaging waste, success of the source separation and potential in the MSW
- Studies regarding recovery in MBT plant
- Efficiency of sorting plants issue of past publications
- Reprocessing has not been described so far



Development of recycling process

- Production of granulates often includes addition of additives to influence properties
- Process was split into two parts
 - Mechanical re-processing is subject of studies of the RWTH Aachen
 - Polymer technological reprocessing is subject of studies of the TU Eindhoven
- Due to certain requirements to the milled good process stages were set

Requirements to the mechanical process


- The milled good needs to be clean, i.e. no surface adhering contaminants (mechanical properties, odour)
- Certain polymers have to be removed (e.g. PVC during PET recycling; certain combinations are allowed e.g. HDPE + PP)
- The milled good needs to be dry (foaming during remelting due to evaporation of water)
- Paper, metals, stones, etc. have to be removed to prevent high wear rates, blocking or breakage of machines
- Energy consumption should be as low as possible
- Yield should be as high as possible
- Comminution, Screening, Washing, Density media separation, Drying (centrifugal, thermal)

Goals of the experiments

- Obtain a mass balance
 - Recovery of mass
 - Yield of recyclable material
- Measure energy consumption
 of each stage
- Measure water use and estimate treatment costs
- Compare source separated and recovered samples, i.e. work with real waste samples instead of artificially generated ones

Recovery: 20 % Yield: 93 %

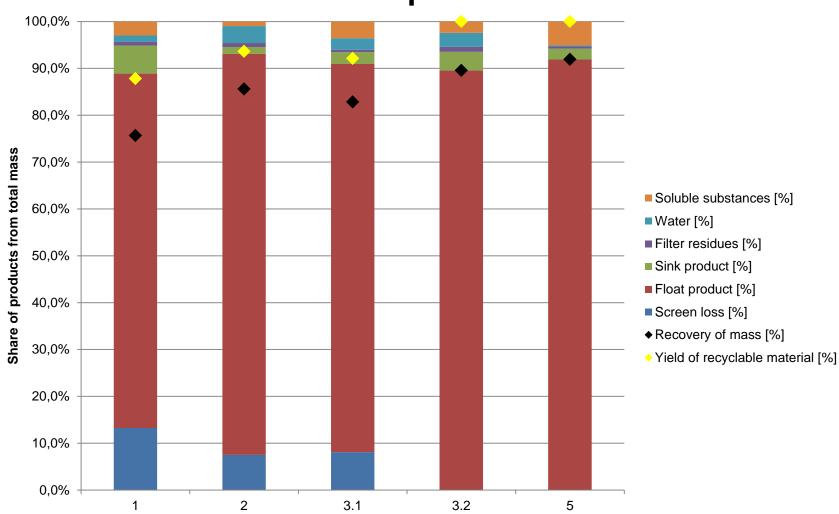
How to calculate the yield?

Issue

- The potential in the input is difficult to measure (multimaterial packaging, e.g. PETbottle with PE-lid and PPlabel)
- The losses in the process stages are difficult to measure due to particle size and colour

Workaround

- Screening was believed to have the largest impact on the yield
- Other losses of recyclable material were assumed to be negligible
- The sink-float-split observed during density media separation was transferred to screening
- Other methods were checked but were found to be less precise

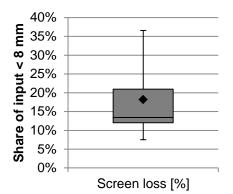

Origin of sample material and DKR-no.

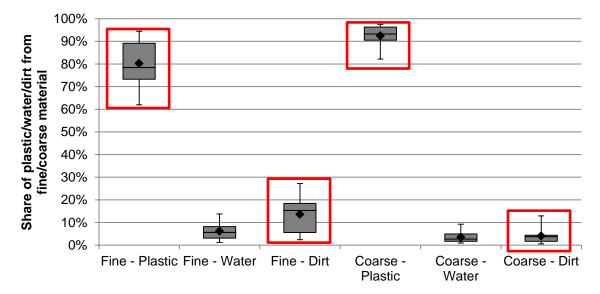
	Sample number	Source		PE 329	PP 324	PO 321	PET	Film	Mixed
r		MSRW	Source separation system					310	plastics 350
1	1	х		х	х	Х	328-3		x
2	2	х		х	х		325	х	x
3	3.1		Screen	ning vs	. No s	creen	328-1	х	х
3	3.2						I 1 1 1 2 8 - 1	х	Х
4	4.1	х		hingu	s. Col	d was	hing	х	
4	4.2	х		ning v				х	
5	5		х	х	Х		328-2	х	х

n = 22

Sample number

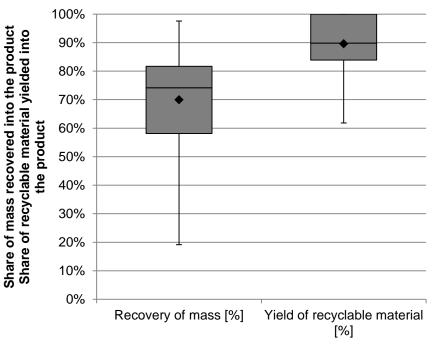
Mass balances HDPE samples

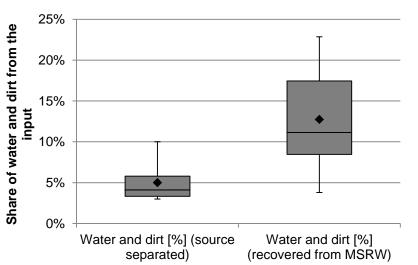




Screening

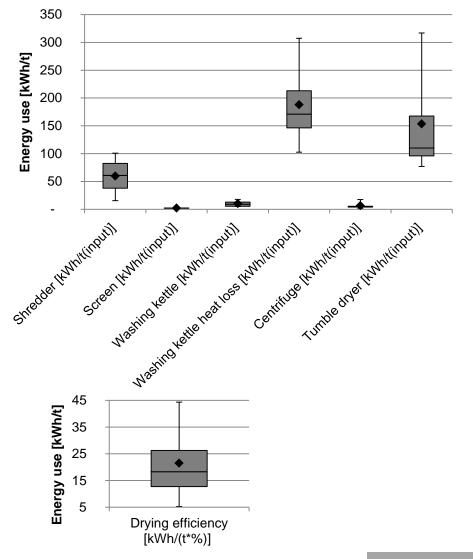
- Screening is able to reduce the amount of dirt in the intermediate product
- High losses of plastic with a 8 mm screen deck
- Screening is suggested but with finer screen deck


RESULTS

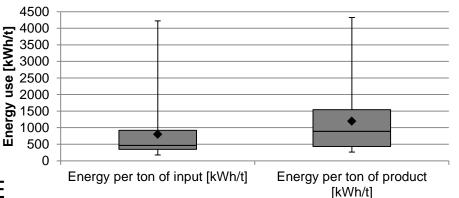


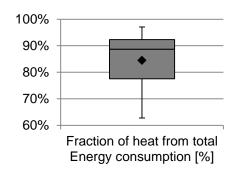
Recovery and yield

- Around 75 % of the input got recovered
- Around 90 % of the recyclable material yielded into the product
- Recovered samples are dirtier
- Therefore lower recovery but the same yield


RESULTS

Energy use HDPE samples


- Main consumers are the shredder, the hot washing stage and the thermal drying stage
- Heat loss is strongly influenced by the calculation model for wash water management
- 18 kWh/Mg were used to remove 1 % of moisture from the product
- Drying equipment in the lab different to industrial equipment



Total energy use

- Around 500 kWh/Mg energy investment for processing
- 90 % of the energy provided has to be heat
- Huge variations between different polymers (e.g. LDPE >> HDPE)
- Potential for optimisation due to process design and equipment selection

RESULTS

für Aufbereitung

Conclusions

- For the first time re-processing of PPW was studied under consideration of recovery, yield, energy use, water use and waste water quality
- It was proven that recovered and source separated PPW can be treated (and in a similar manner)
- Recovery of around 75 % is possible (recovered PPW is app. 7 % dirtier)
- Yield potentially as high as 90 % (no matter of the origin of material)
- Around 500 kWh/Mg have to be invested (mainly for shredding, hot washing and drying)

Any Questions?

Thank you for your attention!

Dipl.-Ing. Michael Jansen Department of Processing and Recycling (I.A.R.) RWTH Aachen University Wüllnerstraße 2 D-52062 Aachen

www.iar.rwth-aachen.de